If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+64t-10
We move all terms to the left:
0-(-16t^2+64t-10)=0
We add all the numbers together, and all the variables
-(-16t^2+64t-10)=0
We get rid of parentheses
16t^2-64t+10=0
a = 16; b = -64; c = +10;
Δ = b2-4ac
Δ = -642-4·16·10
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-24\sqrt{6}}{2*16}=\frac{64-24\sqrt{6}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+24\sqrt{6}}{2*16}=\frac{64+24\sqrt{6}}{32} $
| 6+9r=312 | | 4x+10-3x=3 | | 6+9r=300 | | -3=-3+8x | | d=5+7 | | r/9=34 | | y^2-y-342=0 | | 6x+115=136 | | n+26=90 | | 7.50x+3x=22.50 | | -3.6+0.3k=0.39 | | 100+180-x=180 | | 9r=34 | | -3=-3➕8x | | x/29+x=14 | | 7x+2=2(x-1)+4 | | 2x-56=46 | | 4*4x/119-x=56 | | 30=10p-10 | | 11x-4x+124=11x+48 | | 14x+20=24 | | 31/8m-1/2)+3/4m=3/2 | | 7x+8=7x-1=5x+2 | | 592=8(7x-17 | | 180=(5x+4)+(x-2)+(3x+7) | | 22x-16=68 | | -5x-4=-2x+16 | | 6y+17=65 | | -8x-4=7x-7 | | 180=(2x+22)+(2x+122) | | 2/5(20x-35)=75 | | 14x+7=10x5 |